Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

General Description

The AAT2869 is a low-noise, constant-frequency charge pump $D C / D C$ converter that uses a dual-mode load switch (1x) and fractional (1.5 x) conversion to maximize efficiency for white LED applications. The AAT2869 is capable of driving 4 white LEDs at a total of 124 mA from a 2.7 V to 5.5 V input. The current sinks may be operated individually or in parallel for driving higher-current LEDs. A low external parts count (two $1 \mu \mathrm{~F}$ flying capacitors and two small $1 \mu \mathrm{~F}$ capacitors at IN and OUTCP) makes the AAT2869 ideally suited for small battery-powered applications. The fade-in/fade-out feature makes backlight turn-on/turn-off more visual comfortable. The AAT2869 also includes two 150 mA low, drop-out linear regulators as additional power supplies for display and related camera power. The LDO voltage is also programmable.

Skyworks' Advanced Simple Serial Control ${ }^{\text {TM }}$ (AS 2 Cwire ${ }^{\text {TM }}$) serial digital input is used to enable, disable and set the maximum LED current to one of 32 levels for the LEDs, to enable/disable the LDOs, and to set the LDO's output. The programmable LED current ranges from 31 mA to 0.4 mA .

Each output of the AAT2869 is equipped with built-in protection for short-circuit and auto-disable for load short-circuit conditions. The soft-start circuitry prevents excessive inrush current at charge pump start-up and mode transitions. The AAT2869 is available in the Pb-free, space-saving TQFN3.0x2.2-18L package, and operates over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient temperature range.

Features

- 2.7V to 5.5 V Supply Voltage Range
- Charge Pump for LED Driver
- Dual Mode $1 x / 1.5 x$
- Drives up to 4 LEDs with up to 31 mA each
- Linear LED Output Control Options
- Maximum LED Current Set by AS^{2} Cwire Interface, 32 Steps
- Fade In and Fade Out
- 0.9 MHz Constant Frequency
- Automatic Soft-Start Limits Inrush Current
- Dual 150 mA LDOs
- Five Voltages with $1.2 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.8 \mathrm{~V}$, and 3.0 V , Sixteen Combinations Set by AS^{2} Cwire
- Enable Control Independently by AS²Cwire
- Integrated Discharge Resistor when Disabled
- $<1.0 \mu \mathrm{~A}$ in Shutdown
- Short Circuit Protection
- Small Application Circuit
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Temperature Range
- RoHS Compliant, Halogen-Free TQFN3.0x2.2-18 Package

Applications

- Camera Phones
- Digital Still Cameras (DSCs)
- LED Photo Flash/Torch
- MP3 Players
- PDAs and Notebook PCs
- Smartphones

Typical Application

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Pin Descriptions

Pin \#	Symbol	Function	Description
1	C1+	I	Flying capacitor C1 positive terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{C} 1+$ and C 1 -.
2	LDOB	0	LDOB output. Four output voltages can be programmed by $\mathrm{AS}^{2} \mathrm{C}$ wire: $1.2 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}$, and 2.5 V . 2.8 V is the default output voltage.
3	LDOA	0	LDOA output. Four output voltages can be programmed by $\mathrm{AS}^{2} \mathrm{C}$ wire: $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.0 V . 1.8 V is the default output voltage.
4, 8	GND	PG	Ground connection.
5	AGND	AG	Analog ground connection.
6	INLDO	P	Input power supply pin to LDOs. Connect this pin to IN. A $1 \mu \mathrm{~F}$ capacitor is recommended for bypass use from this pin to ground.
7	IN	P	Input power supply pin. Connect a $1 \mu \mathrm{~F}$ bypass capacitor from this pin to ground.
9	FCAP	I	Fade-in/fade-out filter. Connect a $1 \mu \mathrm{~F}$ capacitor to enable fade-in time of 1 s at 20 mA LED current each. If the fade-in/fade-out function is not used, leave this pin floating.
10	D1	I	LED driver current sink D1. Connect LED cathode to this pin. If not used, please tie to OUTCP.
11	D2	I	LED driver current sink D2. Connect LED cathode to this pin. If not used, please tie to OUTCP.
12	D3	I	LED driver current sink D3. Connect LED cathode to this pin. If not used, please tie to OUTCP.
13	D4	I	LED driver current sink D4. Connect LED cathode to this pin. If not used, please tie to OUTCP.
14	EN/SET	I	Charge pump enable/set. When in the low state, AAT2869 is powered down, and consumes less than $1 \mu \mathrm{~A}$. When EN/SET jumps from low to high, the charge pump is active and 20 mA LED current each are set. The two LDOs are still inactive until data 3 is written to address 4 through the $A S^{2}$ Cwire interface. This pin should not be left floating.
15	C2-	I	Flying capacitor C2 negative terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{C} 1+$ and $\mathrm{C} 1-$.
16	C2+	I	Flying capacitor C2 positive terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{C} 2+$ and $\mathrm{C} 2-$.
17	OUTCP	0	Charge pump output. Connect a $1 \mu \mathrm{~F}$ bypass capacitor between this pin to ground.
18	C1-	I	Flying capacitor C1 negative terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{C} 2+$ and $\mathrm{C} 2-$.
EP			Exposed pad. Connect to ground directly beneath the package.

Pin Configuration

TQFN3.0×2.2-18

(Top View)

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Absolute Maximum Ratings ${ }^{1}$

Symbol	Description	Value	Units
V_{IN}	Input Voltage	-0.3 to 6.0	V
$\mathrm{~V}_{\text {EN }}$	EN to GND Voltage	-0.3 to 6.0	V
$\mathrm{~V}_{\text {EN(MAX) }}$	Maximum EN to Input Voltage or GND	$\mathrm{V}_{\mathrm{IN}}+0.3$	V
$\mathrm{I}_{\mathrm{OUT}}$	Maximum DC Output Current (continuous)	470	mA
$\mathrm{~T}_{\mathrm{J}}$	Maximum Junction Operating Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Maximum Soldering Temperature (at leads, 10 sec.)	300	

Thermal Information ${ }^{3}$

Symbol	Description	Value	Units
θ_{JA}	Thermal Resistance from Junction to Ambient	65.83	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC}	Thermal Resistance from Junction to Case	38.90	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Maximum Power Dissipation	1.5	W

[^0]
Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Electrical Characteristics ${ }^{1}$

$V_{\text {IN }}=3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F} ; \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F} ; \mathrm{C}_{\mathrm{FLY}}=1 \mu \mathrm{~F} ; \mathrm{C}_{\mathrm{FLT}}=56 \mathrm{nF} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Description	Conditions	Min	Typ	Max	Units
Input Power Supply						
$\mathrm{V}_{\text {IN }}$	Input Voltage Range		2.7		5.5	V
$\mathrm{V}_{\text {OUT (max) }}$	Maximum Output Voltage			5.5		V
$\mathrm{I}_{\text {cc }}$	Operating Current	1x Mode, No Load Current, CP enabled		0.5	1	mA
		$\begin{aligned} & 1.5 \times \text { Mode, } \mathrm{I}_{\mathrm{D} 1}=\mathrm{FS} \text {, excluding } \mathrm{I}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=\mathrm{V}_{\mathrm{D} 3}= \\ & \mathrm{V}_{\mathrm{D} 4}=\mathrm{IN} \end{aligned}$		2	4	
$\mathrm{I}_{\text {SHDN(MAX) }}$	Shutdown Current	$\mathrm{EN}=0$			1.0	$\mu \mathrm{A}$
Charge Pump Section						
$\mathrm{I}_{\text {OUt(MAX) }}$	Maximum Output Current	$\mathrm{V}_{\mathrm{F}}=3.6 \mathrm{~V}$		124		mA
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency			0.9		MHz
$\mathrm{t}_{\text {s }}$	Charge Pump Setup Time			100		$\mu \mathrm{s}$
$V_{\text {IN (TH) }}$	Charge Pump Mode Hysteresis	1.5 x to $1 \times$ Transition; $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=\mathrm{I}_{\mathrm{D} 3}=\mathrm{I}_{\mathrm{D} 4}=31 \mathrm{~mA}$		300		mV
LED Current Sink Outputs						
I_{DX}	$\mathrm{I}_{\text {SINK }}$ Current Accuracy ${ }^{2}$	Data 1, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-10		+10	\%
		Data 32 only		± 15		
$\mathrm{Idx}_{\text {(Match) }}$	Current Marching Between Any Two Current Sinks ${ }^{3}$	$\mathrm{V}_{\mathrm{F}} ; \mathrm{D} 1: \mathrm{D} 4=3.6 \mathrm{~V}$	-5		+5	
$\mathrm{V}_{\mathrm{D}_{\text {(}} \text { (H) }}$	Charge Pump Mode Transition	1 x to 1.5x Mode, $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=\mathrm{I}_{\mathrm{D} 3}=\mathrm{I}_{\mathrm{D} 4}=31 \mathrm{~mA}$		120	250	mV
AS 2 Cwire Control and EN/SET Control						
$\mathrm{V}_{\text {EN/SET (L) }}$	EN/SET				0.4	V
$\mathrm{V}_{\text {EN/SET (H) }}$	EN/SET		1.4			V
$\mathrm{I}_{\text {LEAK }}$	EN/SET Input Leakage		-1		1	mA
$\mathrm{t}_{\text {En/Set(Low) }}$	EN/SET Input Low Time		0.3		75	$\mu \mathrm{s}$
$\mathrm{t}_{\text {EN/SET(HI_MIN) }}$	EN/SET Minimum High Time			50		ns
$\mathrm{t}_{\text {EN/SEt(HimaX) }}$	EN/SET Maximum High Time				75	$\mu \mathrm{s}$
$\mathrm{t}_{\text {EN/SET(OFF) }}$	EN/SET Input Off Timeout ${ }^{4}$				500	$\mu \mathrm{s}$
$\mathrm{t}_{\text {EN/SET(LAT) }}$	EN/SET Latch Timeout ${ }^{5}$				500	$\mu \mathrm{s}$
Linear Regulators						
$\Delta \mathrm{V}_{\text {OUT }[\mathrm{A} / \mathrm{B}]} /$ $V_{\text {OUT[A/B] }}$	$\mathrm{LDO}_{\mathrm{A}} \mathrm{LDO}_{\mathrm{B}}$ Output Voltage Tolerance	$\mathrm{I}_{\text {Out }}=1 \mathrm{~mA}$ to $150 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-2		2	\%
		$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$ to $150 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-3.0		3.0	\%
$\mathrm{I}_{\text {OUt }}$ / $\left./ \mathrm{B}\right](\mathrm{MAX}$)	$\mathrm{LDO}_{\mathrm{A}}, \mathrm{LDO}_{\mathrm{B}}$ Maximum Load Current		200		-	mA
$\mathrm{V}_{\text {OUT }}$ / $/$ B](D) ${ }^{\text {d }}$	$\mathrm{LDO}_{A}, \mathrm{LDO}_{\mathrm{B}}{ }^{6}$	$\mathrm{V}_{\text {OUT }[A / B]} \geq 3.0 \mathrm{~V} ; \mathrm{I}_{\text {OUT }}=150 \mathrm{~mA}$		100	150	mV
$\begin{gathered} \Delta \mathrm{V}_{\text {OUT }} / \\ \mathrm{V}_{\text {OUT }} * \Delta \mathrm{~V}_{\mathrm{IN}} \end{gathered}$	Line Regulation	$\mathrm{V}_{\mathrm{IN}}=\left(\mathrm{V}_{\text {OUT } 4 / B]}+1 \mathrm{~V}\right)$ to 5 V		0.09		\%/V
$\mathrm{PSRR}_{[A / B]}$	$\mathrm{LDO}_{\mathrm{A}}, \mathrm{LDO}_{\mathrm{B}}$ Power Supply Rejection Ratio	$\mathrm{I}_{\text {Out }[\mathrm{A} / \mathrm{B}]}=10 \mathrm{~mA}, 1 \mathrm{kHz}$		50		dB
$\mathrm{R}_{\text {OUT_(DCHG) }}$	LDO $_{A}$, LDO $_{B}$ Auto-Discharge Resistance			720		Ω
Thermal						
$\mathrm{T}_{\text {SD }}$	T, Thermal Shutdown Threshold			140		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {HYS }}$	T, Thermal Shutdown Hysteresis			20		${ }^{\circ} \mathrm{C}$

[^1]
Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Typical Characteristics

CP Operating Current vs. Input Voltage (1x Mode)

CP Input Current vs. Input Voltage

LDO Operating Current vs. Input Voltage (LDOA + LDOB)

CP Operating Current vs. Input Voltage
(1.5x Mode)

Shutdown Current vs. Temperature

LDO Operating Current vs. Input Voltage (LDOA Only)

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Typical Characteristics

CP Efficiency vs. Input Voltage

CP Current Matching vs. Temperature $\left(V_{\mathbb{N}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{F}}=3.3 \mathrm{~V} ; 31 \mathrm{~mA} / \mathrm{ch}\right)$

LDO Line Regulation vs. Input Voltage ($\mathrm{V}_{\text {OUt }}=1.2 \mathrm{~V}$)

Frequency vs. Temperature

CP Current Matching vs. Temperature $\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{F}}=3.3 \mathrm{~V} ; 0.5 \mathrm{~mA} / \mathrm{ch}\right)$

LDO Load Regulation vs. Output Current
($\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$)

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Typical Characteristics

EN Input High Threshold Voltage
vs. Input Voltage

EN/SET Input Latch Time vs. Input Voltage

EN Input Low Threshold Voltage
vs. Input Voltage

PWM Input Low Threshold Voltage
vs. Input Voltage

EN/SET Input Off Time vs. Input Voltage

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Typical Characteristics

Time ($40 \mu \mathrm{~s} / \mathrm{div}$)

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Typical Characteristics

1.5x Mode Operating Characteristics ($\mathrm{V}_{\text {IN }}=3.2 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F} ; 31 \mathrm{~mA} / \mathrm{ch}$)

LDO Load Transient
$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V} ; \mathrm{V}_{\text {OUTB }}=1.2 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {оитв }}=2.2 \mu \mathrm{~F}\right.$; 10 mA to 150 mA)

CP Mode Transient

$$
\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V} \text { to } 4.2 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=\mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F} ; 31 \mathrm{~mA} / \mathrm{ch}\right)
$$

Time ($100 \mu \mathrm{~s} / \mathrm{div}$)

PSRR vs. Frequency
$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=500 \mathrm{mVPP}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}\right)$

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Typical Characteristics

Fade In From CP Disable To Enable $\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=\mathrm{C}_{\mathrm{F}}=1 \mu \mathrm{~F} ; 31 \mathrm{~mA} / \mathrm{ch}\right.$)

Fade Out From CP Enable To Disable

$$
\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=\mathrm{C}_{\mathrm{F}}=1 \mu \mathrm{~F} ; 31 \mathrm{~mA} / \mathrm{ch}\right)
$$

Time ($400 \mathrm{~ms} / \mathrm{div}$)

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Functional Block Diagram

Functional Description

The AAT2869 is a high efficiency charge pump white LED driver for portable applications. It can drive up to 4 white LEDs. The two integrated LDOs can provide $1.2 \mathrm{~V}, 1.5 \mathrm{~V}$, $1.8 \mathrm{~V}, 2.8 \mathrm{~V}$ and 3.0 V output voltages in 16 combinations with up to 150 mA load capability.

The AAT2869's charge pump is a fractional charge pump and can multiply the input voltage by 1 or 1.5 times. The charge pump switches at a fixed frequency of 0.9 MHz . The internal mode-selection circuit automatically switches the mode between 1 x and 1.5 x based on the input voltage, white LED forward voltage V_{F}, and the programmed LED current. This mode switching maximizes the efficiency throughout the entire LED load range. When the input voltage is high enough, the charge pump operates in 1 x mode (no charge pump) to provide maximum efficiency. If the input voltage is too low to supply the programmed LED current, typically when the battery discharges and the voltage decays, the $1.5 x$ charge pump mode is automatically enabled. When the battery is connected to a charger and the input voltage rises sufficiently, the device will switch back to 1 x mode.

Six registers are designed for charge pump enable/disable control, LED current programming, fade-in, fadeout enable/disable, two LDOs enable/disable control and LDO output voltage combination setting through the AS^{2} Cwire interface. After writing address 3, the LED current value is programmed by the EN/SET serial data $A S^{2}$ Cwire interface. The $A S^{2} C$ wire interface records rising edges of the EN/SET pin and decodes them into 32 individual current level settings from 0.4 mA to 31 mA . To get a visual fade in and fade out effect, a small external capacitor is used to set LED current rising exponentially to the programmed value and decreasing exponentially to the programmed floor LED current level.

The AAT2869 has five registers with up to four bits each to control LED backlighting enable/disable, LED current, enable/disable for the two LDOs, output voltages, etc. as shown in Table 1. Each data register can be written with 1 to 16 EN/SET rising edges. Some bits are internally reserved and should only be written with data 0 , such as address 0, bit DO, D1 and D3, etc. in order to avoid unexpected results. Address 0 is the default address.If EN/SET is pulled high after a low level lasting for at least

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

AS²Cwire Registers

Address		Function	Data				
Number	EN/SET Rising Edges		D3	D2	D1	D0	EN/SET Rising Edges
0 [Default]	17	Backlight Enable	0	BL_ENB	FADE_EN	FADE_IN	1 ~ 8
1	18	Backlight Floor Level	0	0	FLOOR[1]	FLOOR[2]	$1 \sim 4$
2	19	Backlight MSB	0	0	0	BL[4]	1 or 2
3	20	Backlight LSBs	BL[3]	BL[2]	BL[1]	BL[0]	$1 \sim 16$
4	21	LDO Enable Control	0	0	LDOA_EN	LDOB_EN	$1 \sim 4$
5	22	LDO Output Voltage	LDO[3]	LDO[2]	LDO[1]	LDO[0]	$1 \sim 16$

Table 1: AAT2869 AS²Cwire Registers.
$500 \mu \mathrm{~s} \mathrm{t}_{\text {off }}$ time, data 0 is written to address 0 and LED backlighting is enabled with default 20 mA LED current each.

Address 0 - Backlight Enable and Fade Enable

The BL_ENB bit of address register 0 is adopted to enable or disable the white LED backlighting. 0 enables backlighting; 1 disables backlighting. The FADE_EN and FADE_IN bits are adopted to enable/disable the fade-in/ fade-out function. The other bits of the register should be written with data 0.

For example, to enable a 20 mA fade-in visual effect, send 4 data EN/SET rising edges after an EN/SET low lasting for $t_{\text {LAT }}$ or send 4 data EN/SET rising edges after 17 address EN/SET rising edges.

Address 1 - Backlight Fade Floor Settings

When the fade-out function is enabled, the LED current decreases to the programmed floor level instead of decreasing to zero. The other bits of the register should be written with data 0 .

Addresses 2 and 3 LED Current Level Settings

The LED current level is set via the $A S^{2}$ Cwire interface in a linear scale by 32 codes where the LED current of each higher code is higher than the lower one, as shown in Table 4. In this manner, the LED current decreases linearly with each decreasing code.

Description	BL_ENB	FADE_EN	FADE_IN	EN/SET Rising Edges
Backlight on [default]	0	0	0	1
Backlight on	0	0	1	2
Backlight on, Fade enabled: fade out	0	1	0	3
Backlight on, Fade enabled: fade in	0	1	1	4
Backlight off	1	$0 / 1$	$0 / 1$	$5 \sim 8$

Table 2: AS²Cwire Register Address 0.

Description	FLOOR[1]	FLOOR[2]
Floor 0.5mA [default]	0	0
Floor 1.0 mA	0	1
Floor 2.0 mA	1	0
Floor 3.0 mA	1	1

Table 3: AS²Cwire Register Address 1.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

LED Current Codes	Address 2 BL4	Address 3				$\begin{gathered} \text { LED } \\ \text { Current } \\ \text { (mA) } \end{gathered}$
		BL3	BL2	BL. 1	BLO	
1	0	0	0	0	0	0.4
2	0	0	0	0	1	0.9
3	0	0	0	1	0	1.9
4	0	0	0	1	1	2.9
5	0	0	1	0	0	3.9
6	0	0	1	0	1	4.9
7	0	0	1	1	0	6.0
8	0	0	1	1	1	7.0
9	0	1	0	0	0	8.0
10	0	1	0	0	1	9.0
11	0	1	0	1	0	10.0
12	0	1	0	1	1	11.0
13	0	1	1	0	0	12.0
14	0	1	1	0	1	13.0
15	0	1	1	1	0	14.0
16	0	1	1	1	1	15.0
17	1	0	0	0	0	16.0
18	1	0	0	0	1	17.0
19	1	0	0	1	0	18.0
20	1	0	0	1	1	19.0
21	1	0	1	0	0	$\begin{gathered} 20.0 \\ \text { [default] } \end{gathered}$
22	1	0	1	0	1	21.0
23	1	0	1	1	0	22.0
24	1	0	1	1	1	23.0
25	1	1	0	0	0	24.0
26	1	1	0	0	1	25.0
27	1	1	0	1	0	26.0
28	1	1	0	1	1	27.0
29	1	1	1	0	0	28.0
30	1	1	1	0	1	29.0
31	1	1	1	1	0	30.0
32	1	1	1	1	1	31.0

Address 4 - LDO Enable Control

The AAT2869 includes two low dropout (LDO) linear regulators. These regulators are powered from the battery and produce a fixed output voltage which is set using the $A S^{2}$ Cwire serial interface. $A^{2}{ }^{2}$ Cwire address register 4 turns the two LDOs on/off through the AS^{2} Cwire serial interface. An internal resistor is used to discharge the LDO output voltage when the LDO is disabled.

	Data		
Description	LDOA_EN	LDOB_EN	EN/SET Rising Edges
LDOA Off, LDOB Off [Default]	0	0	1
LDOA Off, LDOB On	0	1	2
LDOA On, LDOB Off	1	0	3
LDOA On, LDOB On	1	1	4

Table 5: AS²Cwire Register Address 4.

Address 5 - LDO Voltage Output Setting

Register address 5 is used to set the LDOA and LDOB output voltage levels. Sixteen combinations of the two LDOs can be programmed by the 4 bits of the register. LDOA can be set to one of four levels: $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.8 \mathrm{~V}$, or 3.0 V . LDOB can be set to one of four levels: $1.2 \mathrm{~V}, 1.5 \mathrm{~V}$, 1.8 V , or 2.8 V . The LDO regulators require only a small $2.2 \mu \mathrm{~F}$ ceramic output capacitor for stable operation. If improved load transient response is required, larger-valued capacitors can be used without stability degradation.

Table 4: AS ${ }^{2}$ Cwire Register Addresses 2 and 3^{11}.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Description	Data				
	LDO[3]	LDO[2]	LDO[1]	LDO[0]	EN/SET Rising Edges
LDOA $=3.0 \mathrm{~V}$, LDOB $=2.8 \mathrm{~V}$	0	0	0	0	1
LDOA $=3.0 \mathrm{~V}$, LDOB $=1.8 \mathrm{~V}$	0	0	0	1	2
LDOA $=3.0 \mathrm{~V}$, LDOB $=1.5 \mathrm{~V}$	0	0	1	0	3
LDOA $=3.0 \mathrm{~V}$, LDOB $=1.2 \mathrm{~V}$	0	0	1	1	4
LDOA $=2.8 \mathrm{~V}$, LDOB $=2.8 \mathrm{~V}$	0	1	0	0	5
LDOA $=2.8 \mathrm{~V}$, LDOB $=1.8 \mathrm{~V}$	0	1	0	1	6
LDOA $=2.8 \mathrm{~V}$, LDOB $=1.5 \mathrm{~V}$	0	1	1	0	7
LDOA $=2.8 \mathrm{~V}$, LDOB $=1.2 \mathrm{~V}$	0	1	1	1	8
LDOA $=1.8 \mathrm{~V}$, LDOB $=2.8 \mathrm{~V}$ [default $]$	1	0	0	0	9
LDOA $=1.8 \mathrm{~V}$, LDOB $=1.8 \mathrm{~V}$	1	0	0	1	10
LDOA $=1.8 \mathrm{~V}$, LDOB $=1.5 \mathrm{~V}$	1	0	1	0	11
LDOA $=1.8 \mathrm{~V}$, LDOB $=1.2 \mathrm{~V}$	1	0	1	1	12
LDOA $=1.5 \mathrm{~V}$, LDOB $=2.8 \mathrm{~V}$	1	1	0	0	13
LDOA $=1.5 \mathrm{~V}$, LDOB $=1.8 \mathrm{~V}$	1	1	0	1	14
LDOA $=1.5 \mathrm{~V}$, LDOB $=1.5 \mathrm{~V}$	1	1	1	0	15
LDOA $=1.5 \mathrm{~V}$, LDOB $=1.2 \mathrm{~V}$	1	1	1	1	16

Table 6: AS²Cwire Register Address 5 LDOA and LDOB Output Voltage Settings.

AS ${ }^{2}$ Cwire EN/SET Interface

The AAT2869 is dynamically programmable using the $A S^{2} C$ wire single-wire interface. $A S^{2} C$ wire records rising edges detected at the EN/SET pin to address and load the data registers. The timing diagram in Figure 1 shows the typical transmission protocol.

The AAT2869 latches address or data after the EN/SET input has been held high for time $t_{\text {LAT }}(500 \mu s)$ through the AS^{2} Cwire interface. Address and data are differentiated by the number of EN/SET rising edges. An address has from 17 to 22 EN/SET rising edges; data has from 1 to 16 EN/ SET rising edges. A typical AS^{2} Cwire interface write protocol is a burst of EN/SET rising edges identifying a particular address, followed by a pause with EN/SET held high for the $t_{\text {LAT }}$ timeout period, then a burst of rising edges signifying data, and another $t_{\text {LAT }}$ timeout after the data has been sent. Once an address is set, multiple writes to that address are allowed since the address is not reset after each write. Address edges are needed when changing the address, or writing to an address other than the default after shutdown. Address 0 is the default address after shutdown. If the part is enabled with only
one rising edge after shutdown, then Address 0 will be programmed and LED backlight channels BL1-BL4 will be enabled to the default setting of 20 mA each.

When EN/SET is held low for a time longer than $\mathrm{t}_{\text {off }}$ ($500 \mu \mathrm{~s}$), the AAT2869 enters shutdown mode with the charge pump and both LDOs all turning off and draws less than $1 \mu \mathrm{~A}$ of current from IN. At shutdown, the data and address registers are reset to 0 .

Short Circuit and Over-Temperature Protection

The AAT2869 integrates short circuit protection to limit the input current in case of the charge pump output or the two LDO outputs are shorted to ground by fault. The backlight and the two LDOs will recover to normal operation once the fault is removed.
The AAT2869 also includes over-temperature protection circuitry. When the junction temperature is too high, the over-temperature protection circuitry is active and the IC enters standby mode, turning off the LED current and LDO outputs. When the fault is removed, the LED backlighting and the LDO outputs all recover.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Figure 1: AS²Cwire Timing Diagram.

Application Information

LED Selection

The AAT2869 is designed to drive high intensity white flash LEDs with forward voltages up to 4.4 V . Though AAT2869 switches the charge pump mode $1 x$ and $1.5 x$ mode automatically to maintain the continuous LED current accuracy, to obtain higher efficiency lower V_{F} white LEDs should be selected.

Maximum LED Current Setting

32 maximum LED current codes from 0.4 mA to 31 mA can be set by two registers using addresses 2 and 3 through the EN/SET A^{2} Cwire interface as shown in Figure 2. To obtain linear LED current change, the AAT2869 will not change the LED current when only address 2 is written. The control circuit only loads data to the address 2 and address 3 registers after address 3 is written to deter-
mine which LED current code is programmed. The address 2 BL4 default value is 0 after one EN/SET rising edge.

Codes 1 to 16 with LED current from 0.4 mA to 15 mA can be set after sending 20 rising edges to address 3 and sending data with 1 to 16 rising edges after $t_{\text {LAT }}$. Codes 17 to 32 with LED current from 16 mA to 31 mA can be obtained after writing both address 2 and address 3 . This operation is performed using the following steps:

1. Select address 2 by sending 19 rising edges to EN/SET and holding high for $\mathrm{t}_{\text {Lat }}$;
2. Send data 1 to set DL4 by sending 2 rising edges and holding high for $t_{\text {LAT }}$;
3. Select address 3 by sending 20 rising edges on EN/ SET and holding high for $t_{\text {Lat }}$;
4. Send data 15 to enable LED current code 32 setting by sending 16 rising edges on EN/SET and holding high for $t_{\text {LAT }}$.

Figure 2: AAT2869 Total 32 LED Current Codes vs. LED Current.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Fade In and Fade Out

AAT2869 adopts several linear current change segments to approximate the exponential LED current change to get a fashion fade-in visual effect. The fade-in time is mainly determined by the external capacitor C_{F} and the charge current. The following formula can be used to estimate how much capacitance is suitable for an expected fade-in time.

$$
\mathrm{C}_{\mathrm{F}}(\mu \mathrm{~F})=\frac{\mathrm{t}_{\text {FADE-IN }}}{48.7 \cdot \mathrm{I}_{\mathrm{LED}}}
$$

For example, for a 1 second fade-in time at 20 mA LED current each, a $1 \mu \mathrm{~F} \mathrm{C}_{\mathrm{F}}$ capacitor can be used. Table 7 shows the fade-in time with C_{F} of 560 nF and $1 \mu \mathrm{~F} \mathrm{C}_{\mathrm{F}}$ at different LED current settings.

$\mathbf{C}_{\mathbf{F}}(\mu \mathbf{F})$	$\mathbf{I}_{\text {LED }}(\mathbf{m A})$	$\mathbf{t}_{\text {FADE-IN }}(\mathbf{s})$
0.56	10	0.273
0.56	15	0.409
0.56	20	0.545
0.56	25	0.682
0.56	30	0.818
1	10	0.5
1	15	0.7
1	20	1.0
1	25	1.2
1	30	1.5

Table 7: Fade-in Time Examples at Different C_{F} and LED Current Settings.

Fade-out time is determined by the discharging time of the C_{F} through an internal $200 \mathrm{k} \Omega$ resistor R. For example, $1 \mu \mathrm{~F} \mathrm{C}_{\mathrm{F}}$ generates 800 ms fade-out time; $560 \mathrm{nF} \mathrm{C}_{\mathrm{F}}$ generates 450 ms fade-out time.

$$
\mathrm{t}_{\text {FADE-OUT }}(\mathrm{s})=4 \cdot \mathrm{RC}_{\mathrm{F}}=0.8 \cdot \mathrm{C}_{\mathrm{F}}
$$

Charge Pump Efficiency

1x Mode Efficiency

The AAT2869's 1x mode is operational at all times and functions alone to enhance device power conversion efficiency when $\mathrm{V}_{\text {IN }}$ is higher than the voltage across the load. When in 1x mode, voltage conversion efficiency is defined as output power divided by input power.

$$
\eta=\frac{P_{\mathrm{OUT}}}{P_{\mathrm{IN}}}
$$

The ideal efficiency (η) in 1X charge pump mode can be expressed as:

$$
\eta=\frac{P_{\mathrm{OUT}}}{P_{\mathrm{IN}}}=\frac{\mathrm{V}_{\mathrm{F}} \cdot \mathrm{I}_{\mathrm{OUT}}}{V_{\mathrm{IN}} \cdot I_{\mathrm{IN}}} \approx \frac{\mathrm{~V}_{\mathrm{F}}}{\mathrm{~V}_{\mathbb{I N}}}
$$

-or-

$$
\eta(\%)=100\left(\frac{V_{F}}{V_{\mathrm{IN}}}\right)
$$

1.5x Charge Pump Mode Efficiency

The AAT2869 contains a fractional charge pump which will boost the input supply voltage in the event where $\mathrm{V}_{\text {IN }}$ is less than the voltage required to supply the output. The efficiency (η) can be simply defined as a linear voltage regulator with an effective output voltage that is equal to one and one half times the input voltage. Efficiency (η) for an ideal $1.5 x$ charge pump can be calculated by the following equation:

$$
\eta=\frac{P_{\text {OUT }}}{P_{\text {IN }}}=\frac{V_{F} \cdot I_{\text {OUT }}}{V_{\text {IN }} \cdot I_{\text {IN }}}=\frac{V_{F} \cdot I_{\text {OUT }}}{V_{\text {IN }} \cdot 1.5 \cdot I_{\text {OUT }}} \approx \frac{V_{F}}{1.5 \cdot V_{\text {IN }}}
$$

-or-

$$
\eta(\%)=100\left(\frac{V_{\text {OUT }}}{1.5 \cdot V_{\text {IN }}}\right)
$$

Capacitor Selection

The AAT2869 requires seven capacitors in its typical application: $\mathrm{C}_{\text {IN }}, \mathrm{C}_{\text {out }}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{\text {FLT }}$ and $\mathrm{C}_{\text {LOA }}, \mathrm{C}_{\text {LOB }}$. Among them, $\mathrm{C}_{\text {IN }}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{\text {out }}$ are required for 1.5 x mode charge pump operation. $1 \mu \mathrm{~F}$ surface-mount multi-layer ceramic capacitors with low (less than $100 \mathrm{~m} \Omega$) equivalent series resistance (ESR) are recommended. Though ESR of the capacitors will not affect the ability of the capacitor to store energy, it has a large effect on performance such as equivalent output resistance, efficiency, and output voltage ripple of the charge pump. Tantalum and aluminum electrolytic capacitors are not recommended due to their high ESR. A value of $2.2 \mu \mathrm{~F}$ or above is required for the LDOA and LDOB output capacitors for proper load voltage regulation and stable operation. Some recommended capacitors are listed in Table 6.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Manufacturer	Part Number	Value ($\boldsymbol{\mu F}$)	Voltage	Temp. Co.	ESR (ms) at 1MHz	Case
Murata	GRM188R61C105KA93	1	16	X5R	18	0603
	GRM185R60J105KE21	1	6.3	X5R	16	0603
	GRM188R61A225KE34	2.2	10	X5R	12	0603
TDK	C1608X5R1C105K	1	16	X5R	5.5	0603
	C1608X5R0J225K	2.2	6.3	X5R	3.3	0603

Table 6: AAT2869 Recommended Capacitors.

For most applications, ceramic capacitors with X5R temperature characteristic are preferred for AAT2869 application. These capacitors have good capacitor tolerance over wide temperature (X5R: $\pm 15 \%$ over $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$). Capacitors with Y5V or Z5U temperature characteristic are generally not recommended for AAT2869. They have wide capacitance tolerance over special temperature (Y5V: $+22 \%,-82 \%$ over $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Z5U}$: $+22 \%,-56 \%$ over $+10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$).

Careful selection of the four external capacitors $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{1}$, $\mathrm{C}_{2}, \mathrm{C}_{\text {out }}$ is important because they will affect turn on time, output ripple and transient performance. Optimum performance will be obtained when low ESR $(<100 \mathrm{~m} \Omega)$ ceramic capacitors are used. In general, low ESR may be defined as less than $100 \mathrm{~m} \Omega$. A capacitor value of 1 uF for all four capacitors is a good starting point when choosing capacitors. If the LED current sinks are only programmed for light current levels, then the capacitor size may be decreased.

Additional Applications

The current sinks of the AAT2869 can be combined to drive higher current levels through a single LED. As an example, Figure 3 shows the AAT2869 driving a single white LED with up to 124 mA by connecting D1-D4 together to the LED cathode.

Printed Circuit Board Layout Recommendations

When designing a PCB for the AAT2869, the key requirements are:

1. Place the flying capacitors C 1 and C 2 as close to the chip as possible; otherwise $1.5 x$ mode performance will be compromised.
2. Place the input and output decoupling capacitors as close to the chip as possible to reduce switching noise and output ripple.
3. Connect the exposed pad to GND plane for optimal power dissipation.

Figure 3: Higher Current, Single LED Application.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Schematic and Layout

Figure 4: AAT2869 Evaluation Board Schematic.

Figure 5: AAT2869 Evaluation Board Top Side Layout.

Figure 6: AAT2869 Evaluation Board Bottom Side Layout.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Component	Part Number	Description		
U1	AAT2869IDT	Fade-in/Fade-out 4 Channel 1X/1.5X Charge Pump for		
White LEDs with Dual LDOs			\quad	Skyworks
:---:				
U2				

Table 8: AAT2869IDT-DB1 Evaluation Board Bill of Materials.

Fade-In/Fade-Out Four-Channel Backlight Driver with Dual LDOs

Ordering Information

Package	Marking 1	Part Number (Tape and Reel) ${ }^{2}$
TQFN3.0x2.2-18L	F3XYY	AAT2869IDT-T1

Skyworks Green ${ }^{\text {TM }}$ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green ${ }^{\text {TM }}$, document number SQ04-0074.

Package Information

TQFN3.0×2.2-183

Top View

Bottom View

Side View

All dimensions in millimeters.

1. XYY = assembly and date code.
2. Sample stock is generally held on part numbers listed in BOLD.
 process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

 responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.
 under, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

 THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 use or sale.

 design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

[^0]: specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.
 2. Based on long-term current density limitation.
 3. Mounted on an FR4 board.

[^1]: with statistical process controls.
 2. Determined by the average of all active channels
 3. Current matching is defined as the deviation of any sink current from the average of all active channels
 4. The EN/SET pin must remain logic low (less than $V_{I L}$) for the duration of longer than 500μ s to guarantee the off timeout.
 5. The EN/SET pin must remain logic high (greater than V_{IH}) for the duration of longer than $500 \mu \mathrm{~s}$ to guarantee the latch timeout.
 6. $V_{D O[A / B]}$ is defined as $V_{I N}-\operatorname{LDO}[A / B]$ when $\operatorname{LDO}[A / B]$ is 98% of nominal.

